

Illinois Public Law and Legal Theory Research Papers
Series

Research Paper No. 04-07

March 18, 2004

Nurturing Software: How Societal Institutions Shape the
Development of Software

Jay P. Kesan**

*University of Illinois, Institute of Communications Research (ICR)

This paper can be downloaded without charge from the Social Science Research Network
Electronic Paper Collection:

http://ssrn.com/abstract=519024

Rajiv C. Shah*

**Associate Professor, University of Illinois College of Law

http://ssrn.com/abstract=519024

Abstract

It is widely recognized that software affects fundamental societal concerns, such

as privacy. Software does not just appear, but is produced within a variety of societal
institutions. This article analyzes how societal institutions shape the development of
software and its resulting implications for society. Specifically, we consider how
institutional rules are evident in the different structures, motivations, and influences of
four societal institutions. We begin by discussing universities and continue on to firms,
consortia, and the open source movement. Once we understand how all of these factors
operate, we can offer predictions on the resulting attributes of software. In the final
section, we show how these institutional factors explain the variation in the development
of web browsers as well as in the incorporation of the societal value of security into
software.

1

Nurturing Software: How Societal Institutions Shape the Development of Software

Software doesn’t grow on trees. Instead software is nurtured and cultivated in several

different environments from universities to firms. In each environment software is nurtured

differently. In turn, this influences the final features of software. This simple observation has

important implications not only for the software development, but also for society. After all, as

Lessig and others have argued, software is the law of cyberspace and affects fundamental

societal issues such as security, privacy, trust, and accessibility [6].

Scholars studying software have emphasized that software can be designed differently.

Each of these designs contain biases that favor certain actors or social values [4, 12]. For

example, Internet search engines do not provide results in an unbiased and neutral fashion.

Instead, they systematically favor certain types of sites over others [5, 7]. Similarly, there is

concern that the design of digital rights management software may inadequately consider values

of fair use and privacy [1, 10].

We argue that an important source of values in software is the institution in which it is

developed. An institution is composed of a group of actors who are subject to a system of rules

that structures their activities. These rules concern goals, rights, procedures, social norms, and

formal legal rules that attenuate individual preferences. We examine four environments or

societal institutions where most software is developed. They are universities, firms, consortia,

and the open source movement. While there is a great degree of variation within each of these

categories, social theorists recognize these institutions as distinct sources of software.

Understanding the development of software has larger implications than revealing the

differing working conditions for software engineers. Increasingly, society seeks to shape

2

software development to address its concerns. This is evident in governmental policies from

funding research into cybersecurity to regulations regarding accessibility features for software.

Through these policies, government is attempting to shape the development of software in

various societal institutions.

To understand how these institutions nurture software differently we utilized a series of

historical case studies that included NCSA Mosaic, Netscape’s cookies, the Platform for Internet

Content Selection (PICS), and the Apache web server. The criteria for these case studies were

that the software must be significantly developed within the societal institution of interest, and

involve an interaction with substantial public policy issues. After all, if there was no significant

public policy issue, then society has little interest in understanding software development. The

data for the case studies was built on documentary sources and interviews.

This article analyzes how societal institutions shape software and its resulting

implications for society. Specifically, we consider how institutional rules are evident in the

different structures, motivations, and influences of four societal institutions. We begin by

discussing universities and continue on to firms, consortia, and the open source movement.

Once we understand how all of these factors operate, we can offer predictions on the resulting

attributes of software. In the final section, we show how these institutional factors explain the

variation in the development of web browsers. A second example considers how institutional

factors affect the incorporation of the societal value of security into software. We discuss the

current state of security as well as how it could be improved.

3

Universities

Universities are institutions whose purpose is to expand the frontiers of knowledge.

Many significant computing technologies have emerged from universities including the Internet,

artificial intelligence, and computer graphics. Society funds universities because private firms

will under invest in basic research [9]. Universities now account for about half of all basic

research spending within the United States and are also the genesis of many technology firms

[8].

Developers in universities are primarily motivated to enhance their reputation in the

scientific community and not purely on economic gain [2]. Reputation is derived from being the

first to discover or develop innovative findings as measured through peer recognition.

Consequently, software developed within universities is institutionally biased towards matters

that are regarded as important by a researcher's peers. This leads to a secondary regard for

potential economic gain when developing software within a university.

To foster the development of innovative software, universities provide their developers

with a measure of autonomy. Universities have recognized that the freedom to pursue self-

directed research can lead to new knowledge and the development of innovative software. For

example, our research found that two key developments for the World Wide Web (“web”) were

the result of autonomy within university-style environments. They include the original

conception of the web by Tim Berners-Lee at the European particle physics laboratory, Conseil

Europeen pour la Recherche Nucleaire (CERN). Similarly, Marc Andreessen initially developed

NCSA Mosaic, the first popular web browser, at the National Center for Supercomputing

Applications (NCSA) at the University of Illinois at Urbana-Champaign. Andreessen has said

4

that he believes the unstructured work environment at NCSA supported the development of

innovative ideas and software.

The scarcity of resources within universities is an important economic influence affecting

software development. Universities simply cannot fully fund all their ongoing research.

Developers cannot depend upon a large technical support staff, and functions seen as extras or

“bells and whistles,” such as technical support and documentation, are not fully supported.

Consequently, this provides researchers the impetus to seek resources, such as research grants,

outside the university. This can also lead developers to focus on developing the standards and

building blocks for others to build upon. Berners-Lee used this strategy during the development

of the web. He developed the standards and reusable building blocks of software that became

the basis for future web browsers and servers.

Firms

In our economic system, it is the private sector that develops most software. In 1999,

firms spent six times more than government on basic research, applied research, and

development activity [8]. As a result, firms such as IBM and Microsoft have historically

developed much of the software widely adopted in society.

The motivation of a firm is straightforward. Firms are driven by profit. To achieve

profits, firms must provide goods and services that meet consumer demand. Successful firms

listen to their customers, provide them with the services that they need and will need, and

provide support when they run into trouble [11]. As a result, economic concerns shape the

development of software created by firms. Consequently, values that are assumed to be

unprofitable, are not factored into a firm's decision-making process, even if these values are

5

important to society. For example, consider the cookies technology, which allows web sites to

save state and therefore maintain information on their users. When Netscape implemented this

technology, we found that Netscape did not spend its resources developing software that would

minimize the privacy concerns posed by the cookies technology since this action could be

viewed as not being profitable. This explains why early versions contained no cookie

management tools or even documentation about cookies. This neglect of unprofitable societal

concerns by firms is understandable and is further discussed in the implications section.

Consortia

The production of software is not done entirely by firms or by the government to the

exclusion of the other. Often, they cooperate. An important form of cooperation is the

consortium. Two prominent consortia for the Internet are the World Wide Web Consortium

(W3C) and the Internet Engineering Task Force (IETF). They both develop standards that are

useful to all their members by relying on cooperation between competing firms.

The primary influence on the development of standards within a consortium is its

members. It is the members who decide what projects to pursue and the appropriate level of

resources. The members also affect the development process through their choice of a

consortium’s structure. This involves decisions on membership composition and membership

rights, intellectual property rights, and the procedural rules that govern their work. Additionally,

these structures are not fixed but can change over the lifetime of a consortium. For example, the

W3C was established with the intent of creating a faster standards process than the IETF. As the

W3C has aged, it has added formal procedures that have slowed down its development process.

6

Consortia may ignore or overlook outside social influences or third parties during the

development process. This is important because, at first glance, consortia often appear to be

working for the benefit of the public as a whole. But because consortia are accountable only to

their members, they do not adequately consider the needs of third parties, such as independent

software vendors and end users. This can result in ineffective or technically poor solutions. For

example, our research found the W3C developed PICS largely in response to political and legal

pressures placed upon its members. As a result, they did not consider the needs of end users,

such as parents, or firms that sell filtering software. This occurred because the end users and the

commercial filtering firms were not part of the development process. As a result, PICS is of

little use to parents and firms selling filtering software.

Open Source Movement

The open source movement is an institution that stands apart from universities, firms, and

consortia. It has developed software that rivals commercially available software, including

Apache, the Linux operating system, the scripting language PERL, and the popular email server

Sendmail. The defining characteristic of the open source movement is an overriding norm that

source code should be made available to the public [3]. By keeping the source code publicly

available, developers can build upon others’ earlier work to create more refined and complex

software.

The motivations of the open source movement are varied. There are a small number of

paid participants as well as private firms. These entities, such as IBM, have a direct financial

motivation in the development of open source software. However, the motivations for the vast

majority of unpaid participants vary. They range from being focused on software development

7

for creative satisfaction, utilitarian enhancement including a rise in reputation, or a political

motivation that sees open source as superior to proprietary software.

The open source movement’s development process is primarily influenced by its

membership of volunteer developers. Because they can only provide limited time and resources,

the limits of volunteerism shape the development of software. In contrast to a firm, there is no

pressure to force volunteers to work on a particular project in a timely manner. Consequently, it

is the volunteers who decide what software will be written and on what time schedule. They also

wish to work on interesting tasks. The resulting software is then biased towards the interests of

the volunteers, who are sophisticated developers and not ordinary users. This leads to the

projects that developers think are interesting or useful, such as desktop environments and text

editors. As a result, volunteer members may not necessarily work on software that is in greater

demand or more socially beneficial.

The emphasis on personal motivation attenuates external influences on open source

software. An international team of volunteer members leads the open source movement. This

diverse set of developers is focused on developing what is interesting to them and is not driven

entirely by external political or economic concerns. For example, Mozilla, an open source web

browser based on Netscape’s web browser, contains features to block images from third party

web sites and pop-up advertising windows. Moreover, at times, the open source movement can

be defiant to conventional economic and political influences. For example, consider the

refinement of the Gnutella file-sharing program. The open source movement improved Gnutella

largely because its decentralized design was intended to prevent users from being blocked access

to the file-sharing network and also to avoid vicarious copyright liability concerns after Napster.

8

The results of our findings are summarized on institutional features and the influences on

the development process are represented in Table 1 and Table 2, respectively. The results shown

in the tables are from our larger body of research, only some of which is discussed here.

Table 1. Institutional Features
Institution (Case
Study)

Institutional Focus Developers’
Motivations

Structural Features Perceived End
User

University (NCSA
Mosaic)

Create and
disseminate
knowledge

Reputation Scarcity of resources Public

Firm (Cookies) Profit Financial compensation Adequate resources Customers
Consortia (PICS) Cooperatively

develop products
Varies, developers may
be employees or
volunteers

Many variations in
structure, such as
membership composition
and rights

Varies, they may
restrict to their
members or may
make public

Open Source
Movement (Apache)

Create software with
publicly available
source code

Varies, developers may
be employees or
volunteers

Decentralized
development process

Public

Table 2. Influences on the Developmental
Process for Software

Social & Political Influences Economic Influences
University Developers are provided

autonomy and strive for peer
recognition.

Striving for grants and
creating “building blocks”

Firm Influential, if they are likely to
lead to higher costs

Strong emphasis on
anticipating consumer
demand

Consortia Members are the primary influence, but this may lead to
overlooking third parties.

Open
Source
Movement

Members are the primary influence. The “limits of
volunteerism” and the needs of developers serve as powerful
influences, while economic and political influences are slight.

Implications

Once we understand the institutional features and influences that shape software, we can

explain certain attributes of software. A schematic of this process is shown in Figure 1. The

attributes affected could include technical issues, such as the use of open standards, or business

issues, such as providing technical support, or social characteristics such as the concern for

9

privacy. We use the term shape instead of cause because all of these institutional factors do not

cause specific features in a simple one-to-one fashion. Instead, software development is more

complex and nuanced. Our analysis seeks to indicate salient institutional factors that can

influence or shape the development of certain attributes. Our findings of how institutional

features and influences affect the technical and social attributes of software is shown in Table 3.

We illustrate these implications with two examples. First, we briefly consider the difference in

the development of web browsers. Second, we discuss how institutions differ over incorporating

societal concerns into software by considering security.

Figure 1. Schematic Representation of Software Development

Institutional
Features

Influences on the
Developmental

Process for
Software

Technical and Social
Attributes of Software

10

Table 3. Technical and Social Attributes of Software
IP Protection Open

Standards
Quality of
Software

User-friendly Marketing &
Technical Support

Incorporation of
Societal values

University Not typically Favors
open
standards

Not
emphasized

Not
emphasized

Limited due to
scarce resources

Autonomy results in
software with a wide
variety of values

Firm Typically, to
restrict access
to customers

Varies, it
is a
strategic
decision

Generally high
quality

Emphasized Emphasized to
create, develop,
and retain
customers

Only profitable
values are
incorporated

Consortia Varies, but
W3C and IETF
make their
standards freely
available

Varies Varies,
depending
upon input
from members
and the public

Varies Varies from little
marketing to those
that promote and
certify standards

Varies, but it may
address societal
issues in ways that
benefit the members
and not the public

Open
Source
Movement

Used to ensure
availability of
source code

Favors
open
standards

Varies, but can
produce high
quality
software

Not
emphasized,
and often
software is for
sophisticated
developers

Not emphasized Variety of influences,
but limited by the
members’ concern

Web Browsers. A cursory examination of web browsers shows how institutional factors

affect software development. Web browsers created within universities, such as NCSA Mosaic,

tend to focus on innovative features. In the case of NCSA Mosaic, this browser was a significant

advance over other web browsers because of its ease of use and the capability to view images in

web pages. While firms focus on features that contribute to profits. In the case of the Netscape

web browser, this led to an emphasis on improving security, commerce, and performance, and

resulted in new technologies such as cookies, continuous document streaming, and Secure

Sockets Layer. In contrast, consortia focus on their members needs. The W3C’s web browser,

Amaya, is not designed to compete with commercial web browsers, but to test new technologies

produced by the W3C and their members. Finally, the open source movement has developed a

wide variety of web browsers including Mozilla and Konqueror. Their accomplishment has not

been innovation, but instead continual incremental refining and the inclusion of features that

11

commercial web browsers were hesitant to incorporate, such as pop-up ad blocking and cookie

management tools.

Societal Concerns. Institutions differ in their incorporation of societal concerns into

software. Examples of societal concerns include features such as privacy, protecting minors

from inappropriate content, and protecting intellectual property rights. If these concerns are not

adequately expressed in software, society may use actions such as government regulation to

force the development of software. As an illustration of the different inclinations of institutions

consider the incorporation of security.

Universities have traditionally conducted research into a variety of issues including

cybersecurity issues. Security is but one of many sub-fields of computer science. Recently,

considerable interest has been shown by government and firms in security research. This is

being accomplished by increasing funding for research as well as increased demand for

graduates well versed in cybersecurity.

Firms generally do not produce software that supports unprofitable, but socially

beneficial, values. This is because firms seek to meet the needs of their customers and not

society in general. Historically, we see a decreased emphasis on security in many software

products produced by firms. This was because firms believed that consumers were seeking

speed, convenience, and new features over security. These attitudes can be explained by

consumers not fully understanding the costs of security and not having to fully bear the costs of

poor security. If consumers become more knowledgeable about security issues and choose to

collectively bear greater responsibility for security, this could prompt firms to incorporate

security.

12

Consortia differ in their willingness to develop standards that address societal values. In

the case of security, there are several consortia that are actively developing new security

standards. However, the final standard that is adopted is only approved by the consortia’s

members and necessarily excludes certain third parties who may be affected by the standards.

As a result, the standards developed by consortia may be ineffective or not widely adopted. This

is what happened with PICS.

Finally, the open source movement is subject to a variety of influences and can

incorporate a wide range of social values including security. The development of secure

software is fundamentally affected by whether it is a motivating concern for open source

developers. If developers care about security then it will be reflected in the final software.

Another factor that results in improved security is the widespread dissemination of source code,

which allows for peer review of the software. Thus far, there is a wide variation in security

among open source projects, with some projects being heavily scrutinized and improved upon

while others languish with security flaws.

Conclusion

The nurturing or the development of software is not universally uniform. Instead,

software engineers labor within institutions. Our research found that societal institutions have

differing structures, motivations, and influences that affect software development. This led us to

identify and explain salient institutional factors for the development process. Because of these

varying institutional factors, software with the same technical functionality may have very

different features, characteristics, and values. This was illustrated by showing how universities,

firms, consortia, and the open source movement each have shaped the development of web

13

browsers in different ways. We also showed how institutional factors can explain the current

state of security for software as well as how it can be improved in the future. While institutional

factors cannot explain all features of software, they provide a starting point for understanding

how software develops. Our hope is that this analysis not only describes the nurturing of

software, it also may inform how society could intervene to develop better software.

14

References

1. Camp, L. DRM doesn't really mean copyright, IEEE Internet Computing 7, 3 (2003), 59-65.

2. Dasgupta, P. and David, P. A. Toward a new economics of science. Research Policy 23
(1994), 487-521.

3. DiBona, C., Ockman, S., & Stone M. Open sources: Voices from the open source revolution.
O’Reilly, Cambridge, 1999.

4. Friedman, B. and Nissenbaum, H. Bias in computer systems. ACM Transactions on
Information Systems 14, 3 (1996), 330-347.

5. Introna, L. and Nissenbaum, H. Defining the web: The politics of search engines. IEEE
Computer 33, 1 (2000), 54-62.

6. Lessig, L. Code and other laws of cyberspace. Basic Books, New York 1999.

7. Mowshowitz, A. and Kawaguchi, A. Bias on the web. Communications of the ACM 45, 9
(2002), 56-60.

8. National Science Board, Science and engineering indicators - 2002. National Science
Foundation, Arlington, Va. 2002.

9. Nelson, R. The simple economics of basic scientific research. Journal of Political Economy
67, 3 (1959), 297-306.

10. Samuelson, P. Encoding the law into digital libraries. Communications of the ACM 41, 4
(1998), 13-18.

11. Shapiro, C. L. and Varian H. R. Information rules. Harvard University Press, Cambridge,
1998.

12. Winner, L. Do artifacts have politics? Daedalus 110, 4 (Winter 1980), 121-136.

